Ribosome-inactivating proteins are toxins able to specifically and irreversibly block protein synthesis. These proteins, known as ribosome-inactivating proteins (RIPs), are found in many plants and are capable of inactivating ribosomes. They have been studied extensively due to their potential as anticancer agents. RIPs are a group of closely related proteins that are found in a variety of plants, including those from the genera Ricinus communis, Digitalis purpurea, and Fritillaria meleagris.

In mouse liver cells, the ribosome-inactivating protein from Bougainvillea x buttiana has been found to induce apoptosis. This protein is capable of targeting conserved host protein synthesis machinery, making it a promising candidate for therapeutic use.

A full-length cDNA encoding the antiviral protein RIP-AVP from the leaves of a plant has been isolated and expressed. This protein has been shown to have antiviral activity against a wide range of viruses.

Ribosome-inactivating proteins are a group of closely related proteins that are found in a variety of plants. They are capable of inactivating ribosomes and are thought to act by inhibiting protein synthesis.

A number of bacterial and plant toxins act by inhibiting protein synthesis. These toxins include the ribosome-inactivating proteins from plants and the ricin A-chain from the heterodimeric toxic lectin ricin.

Ribosome-inactivating proteins from plants have also been used as immunotoxins for the treatment of cancer. These proteins are able to selectively target cancer cells, making them a promising therapeutic option.

Ribosome-inactivating proteins are a group of closely related proteins that are found in a variety of plants. They are capable of inactivating ribosomes and are thought to act by inhibiting protein synthesis. These proteins have been shown to have potential as anticancer agents and have been used in the development of immunotoxins.
RIPs are widely distributed among different plant genera. Many plants produce ribosome-inactivating proteins (RIPs), enzymes that act on ribosomes in a highly specific way, thereby inhibiting protein synthesis. In addition, it is evident that the working mechanism proposed for pokeweed antiviral protein cannot be extrapolated to elderberry ribosome-inactivating proteins. Many plants produce ribosome-inactivating proteins (RIPs), enzymes that act on ribosomes in a highly specific way, thereby inhibiting protein synthesis. Examined for inhibition of protein synthesis by a rabbit reticulocyte lysate.

Ribosome-inactivating proteins (RIPs) are potent poisons and molecular tools and resemble the ribosome-inactivating proteins from plants previously described. Ribosome-inactivating proteins (RIPs), mostly from plants, are enzymes which depurinate rRNA, thus inhibiting protein synthesis. Previous researches showed that ribosome-inactivating proteins (RIPs) isolated fromMirabilis jalapa, Ribosome-inactivating protein (RIP), antibacterial.